Page '	1
--------	---

	MAINTENANCE TRACKING TOOL	
A d v a n c e d Accelerator Applications	PETTRACE800	Date:2024-06-12
A Mevartis Company		

Country: Iberia	Site: BAR	
Intervention:	Programmed maintenance: UBM/CBM	\checkmark
Subsystems:		_

PRE-MAINTENANCE

Registration Date: 2024-06-12 Gas flow(sccm): 200.0

TPG Settings Verifications

	Low limit (x10-)	High limit (x10-)
Piranni 1 (TPG300 A1):	0.7	
Piranni 2 (TPG300 A2):	0.2	7.00E-2
Penning:	1.80E-5	2.20E-5

<u>Notes</u>

notas

Gauge number	Pressure (x10-) without gas	Pressure (x10-) with gas
A1 (mbar):	100	110
A2 Under Range:	\checkmark	\checkmark
A2:	-	-
B1 (mbar):	105	115

System software

Subsytem	Version
Master:	3.5.2
ACS:	1.2
Service System:	2
Manager:	59
Informix (only applicable to SUN-Master Station):	159

Comments

comentarios pre-maintenance

Paper Burn Before PM

VACUUM

TPG settings verifications

Date: 2024-06-12 Production gas flow: 5.0

Piranni 1 (TPG300 A1)

Pressure with gas	Low limit (x10-)	High limit
4.00E-2	0.7	0.1

Piranni 2 (TPG300 A2)

Under range	Pressure with gas	Low limit	High limit
\checkmark	-	0.1	7.00E-2

Penning

Pressure with gas	Low limit	High limit
1.20E-5	1.80E-5	2.20E-5

<u>Notes</u>

notas vacum TPG

Vacuum MFC curve test

SCCM	Chamber pressure	Backing pressure
1	1.00E-5	5.00E-3
2	1.00E-5	5.00E-3
3	1.30E-5	5.30E-3
4	1.60E-5	5.60E-3
5	1.90E-5	5.90E-3
6	2.10E-5	6.10E-3
7	2.40E-5	6.40E-3
8	2.70E-5	6.70E-3
9	3.00E-5	7.00E-3
10	3.30E-5	7.30E-3

Vacuum leak test

Seconds since push standby	Chamber pressure	Max. Chamber pressure
0	5.00E-5	1.80E-07
10	5.10E-5	1.00E-06
20	5.20E-5	1.50E-06
30	5.30E-5	1.90E-06
40	5.40E-5	2.30E-06
50	5.50E-5	2.70E-06
60	5.60E-5	3.00E-06
70	5.70E-5	3.30E-06
80	5.80E-5	3.60E-06
90	5.90E-5	3.90E-06
100	6.00E-5	4.20E-06
110	6.10E-5	4.60E-06
120	6.20E-5	4.90E-06

Diffusion pump & HVV timing

TimeInto	HeatingTime	PumpingTimeBeforeOpenHVV (Min)	TimeToOpenHVV
Heating oil	1.0		
TimeInto	HeatingTime	PumpingTimeBeforeOpenHVV (Min)	TimeToOpenHVV
Pump		2.0	

TimeInto	HeatingTime	PumpingTimeBeforeOpenHVV (Min)	TimeToOpenHVV
Open HVV			3.0

RP & DP pump oil condition

Date last rotary oil change: 2024-06-12

Roughing pump oil mist filter cleaned	Roughing pump oil is in good color and condition
\checkmark	\checkmark

Last DP maintenance: 2024-06-03

DP oil is in good color and condition	
---------------------------------------	--

RP Photo

DP Photos

Photo DP

<u>Notes</u>

Vacuum RP and DP		

<u>OtherTest</u>

Name the test	test demo
Test explanation	Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the I

Photos or Videos	
<u>demo</u>	

Page 8

PETtrace800 O-Rings analysis

CHAMBER

Chamber Opening

Close target cooling water lines	
Visual inspection of door bolts and motor	\checkmark
Bolt replacement if needed	\checkmark

Measure yoke play, adjust if needed: 9

Dose rate mapping (positions 1-9, [µSv/h])	
Position 1: At 36 cm from Extraction trolley	-
Position 2: At 36 cm from Carousel	-
Position 3: At 36 cm from Dee 2-stem junction	-
Position 4: At 36 cm from Deel upper corner	-
Position 5: At 36 cm from Central region	-
Position 6: At 36 cm from Stems coupler	-
Position 7: At contact with central region	-
Position 8: At 36 cm from magnet pole	-
Position 9: At contact of magnet coil	-

Beam exit valve tests

Visual inspection of tubing	\checkmark
BEV replacement if needed	\checkmark
Target port O-ring replacement	\checkmark

<u>Flaps</u>

<u>Flap 1</u>

Calibrate flaps, record minimum and maximum motor current:

Minimum current [mA]	546
MaximumCurrentMA	94

Record flap to dee distances for 0%, 50%, 100%

0% value [mm]	122
50% value [mm]	0
100% value [mm]	234

<u>Notes</u>

asdaa

<u>Flap 2</u>

Calibrate flaps, record minimum and maximum motor current:

Minimum current [mA]	412
MaximumCurrentMA	22

Record flap to dee distances for 0%, 50%, 100%

0% value [mm]	0
50% value [mm]	12
100% value [mm]	1

<u>Notes</u>

Central Region

Visual inspection of flip-in probe	

Measure flip-in probe position (a,b,c,d,e)

	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]
1 2 3 4 3	1	2	3	4	5

Measure central region distances (A, B, C, D) [mm]

A [mm]	B [mm]	C [mm]	D [mm]
0	0	5	4

Visual inspection and photo of H-puller	
If needed: H-puller replacement	

If needed: Adjustment of central region and record A, B, C, D again

If needed: Adjustment of central region and record A, B, C, D again		N	1
A [mm]	B [mm]	C [mm]	D [mm]
85	984	0	12

If needed: Ion source maintenance or replacement	\checkmark
Install back ion source	\checkmark

Restore and record flip-in probe position

Restore and record flip-in probe position		N	1
A [mm]	B [mm]	C [mm]	D [mm]
32	32	0	32

Pictures	
Image	Comments
CentralRegion_1012.jpg	a

Dees

Visual inspection of dees, internal and external baffles	\checkmark

	Measure dee thickness	Measure dee height
A	1	9
В	2	10
С	3	11
D	0	12
E	5	13
F	6	14
G	7	15
Н	0	16

Comments
S
ŝ

Visual inspection of dees, internal and external baffles	

	Measure dee thickness	Measure dee height
А	132	6312
В	0	8
С	132	65
D	45	452
E	65	21
F	15	84
G	8	1
н	0	0

Pictures		
Image	Comments	
Dees_1006.jpg	465	
Verify tightness of dee- and stem screws	\checkmark	

Page 15

Extraction

Replace extraction foils of carousels	\checkmark
Visual inspection of extraction cables	\checkmark
Test each microswitch of extraction system	\checkmark

Calibrate balance, record minimum and maximum motor current [mA]

	Calibrate balance, record minimum and maximum motor current	Calibrate extraction 1, record minimum and maximum motor current [mA]	Calibrate extraction 2, record minimum and maximum motor current [mA]
Minimum current [mA]	13	20	12
Maximum current [mA]	20	25	15

Diagnostic system checks

Target ID	
Visual inspection of collimators and collimator cables	\checkmark
Check collimator screws tightness	\checkmark
Measure flip-in probe resistance	11
Target Resistance	12
Lower Collimator Resistance	13
Upper Collimator Resistance	-
Horizontal Collimator Opening	15
VerticalCollimatorOpening	16

	Resistance Measurement	Insulation Measurement
Extraction 1	0	18
Extraction 2	19	20

Comments	sda

Chamber Clean-up

Carousel repositioning

Foil change test on each carousel	\checkmark
Reset foil counter	

Full picture of vacuum chamber	
Image_1006.jpg	

Chamber clean-up

Clean dees and magnet poles	\checkmark
Foil change test on each carousel	\checkmark

Full picture of vacuum chamber		
Image_1007.jpg		

Chamber clean-up

Inspect RF finger contacts	\checkmark

Swedwater

Inspect cooling water system for leaks	Magnet coil water connections, Water connections to vacuum chamber, Target water manifold
If needed inspection of cooling water filters	Inspect and clean Z1 filter, Inspect Z2 filter, replace if needed

Record of water cooling system performance

Record expansion vessel pressure BP1 [bar]	1
Record water level [mm]. Adjust if needed	2
Record main pump pressure BP2 [bar]	3
Record system temperature BT1 [°C]	0
Record temperature alarm setting [°C]	5
Record cooling water out temperature T2 [°C]	6
Record cooling water in temperature BT3 [°C]	7
Record deionizer flow BF10 [l/min]	8
Record conductivity BQ1[(µS/cm]	9
Replace deionizer vessel if needed	\checkmark

Pictures		
Image	Comments	
Image_1003.jpg	gh	

Inspect cooling water system for leaks	Bunker water manifold,Magnet coil water connections,PSMC / RFPG water manifold,Check the condition of target cooling water lines, replace if needed
If needed inspection of cooling water filters	Inspect and clean Z1 filter

Record of water cooling system performance

Record expansion vessel pressure BP1 [bar]	6
Record water level [mm]. Adjust if needed	4
Record main pump pressure BP2 [bar]	8
Record system temperature BT1 [°C]	2
Record temperature alarm setting [°C]	0
Record cooling water out temperature T2 [°C]	0
Record cooling water in temperature BT3 [°C]	78
Record deionizer flow BF10 [l/min]	1
Record conductivity BQ1[(µS/cm]	1
Replace deionizer vessel if needed	\checkmark

Pictures		
Image	Comments	
Image_1004.jpg	awESDF	

Cabinets RFPG

RFPG general tasks

Switch off power to RFPG, log out & tag out	Replace the RFPG air inlet filters, clean the front grid cover, inspect the grid of the back of the cabinet, clean if required
\checkmark	

TAU inspection

TAU inspection	Verify that no burn marks, loose cables, or water leaks are present
Repair and/or replace as required	es

Take photos (upper and lower compartment)

inage_ruos.jpg	Image_1003.jpg		
----------------	----------------	--	--

GSPU inspection

Verify that no burn marks or loose cables are present	\checkmark
Clean	\checkmark

Repair and/or replace as required			
repair			

Take photos

Image_1003.jpg		

DPA inspection

Verify that no burn marks, loose cables, or water leaks are present	
Clean	

Repair and/or replace as required
replace

Take photos

Image_1003.jpg

TPSU back side inspection

Record the resistance of the earth stick	
TPSU back side inspection	

Repair and/or replace as required

Take photos

Image_1003.jpg

Remove earth stick

TPSU front side inspection

TPSU front side inspection	Clean, Check and tighten all terminal screws
----------------------------	--

Repair and/or replace as required			
sa			

Take photos

Image_1003.jpg	

RFPG live tests

Record RFPG water cooling pressure	Switch on RFPG main power	Record DPSU voltage [V]	Record DPSU ripple [mV rms]
12	\checkmark	210	2

Record voltages on phase load detector board (SCU)

3V [V]	TP1 +15V [V]	TP2 -15V [V]	TP3 +5V [V]	TP4 +24V [V]
1	2	3	4	0

Record ripple on phase load detector board (SCU)

3V [V rms]	TP1 +15V [V rms]	TP2 -15V [V rms]	TP3 +5V [V rms]	TP4 +24V [V rms]
6	7	8	9	0

Turn on Magnet to set value	\checkmark

Record RF parameters in off mode

RFrom SCU Webpage:

DEE voltage ref [V]	5
DEE voltage read 1 [V]	4
DEE voltage read 2 [V]	8
RF fwd voltage [Vrms]	0
RF reflected voltage [Vrms]	3
DPA RF FWD voltage [Vrms]	12
FWD power [kW]	8
Reflected power [kW]	3
Anode voltage [kV]	0
Anode current [A]	4
Grid voltage [V]	9
Grid current [A]	1
Screen voltage [V]	5
Screen current [mA]	98
Heater voltage [V rms]	1

DEE voltage set [kV]	0.00E+0	
DEE voltage read [kV]	9	
Delta DEE voltage set [kv]	6	
Delta DEE voltage read [kV]	1	
FWD power [kV]	7	
Reflected power [kV]	0	
Flap I start [%]	1.85E+2	
Flap I position [%]	2	
Flap II start [%]	0	
Flap II position [%]	1	

Record RF parameters in standby mode

From SCU Webpage:

DEE voltage ref [V]	74
DEE voltage read 1 [V]	8
DEE voltage read 2 [V]	5
DRF fwd voltage [Vrms]	4
RF reflected voltage [Vrms]	1
DPA RF FWD voltage [Vrms]	2
FWD power [kW]	6
Reflected power [kW]	8
Anode voltage [kV]	5
Anode current [A]	7
Grid voltage [V]	4
Grid current [A]	5
Screen voltage [V]	0
Screen current [mA]	9
Heater voltage [V rms]	78

DEE voltage set [kV]	5
DEE voltage read [kV]	4
Delta DEE voltage set [kv]	0
Delta DEE voltage read [kV]	9
FWD power [kV]	5
Reflected power [kV]	8
Flap I start [%]	6.0
Flap I position [%]	41.0
Flap II start [%]	7.0
Flap II position [%]	4.0
Soft-start RFPG. Start from 25kV / 0kV, ramp up with 1kV / 10s to config value	\checkmark

Record RF parameters in on mode

From SCU Webpage:

DEE voltage ref [V]	4
DEE voltage read 1 [V]	0
DEE voltage read 2 [V]	9
RF fwd voltage [Vrms]	7
RF reflected voltage [Vrms]	8
DPA RF FWD voltage [Vrms]	4
FWD power [kW]	5
Reflected power [kW]	0
Anode voltage [kV]	6
Anode current [A]	4
Grid voltage [V]	8
Grid current [A]	5
Screen voltage [V]	9
Screen current [mA]	5
Heater voltage [V rms]	4

DEE voltage set [kV]	1
DEE voltage read [kV]	0
Delta DEE voltage set [kv]	8
Delta DEE voltage read [kV]	5
FWD power [kV]	4
Reflected power [kV]	8
Flap I start [%]	5.0
Flap I position [%]	6.0
Flap II start [%]	3.0
Flap II position [%]	5.0
Let the system run for approximately 1-2 hours, monitor parameters, record fastlog, five second log and statistic log, download the SCU logs.	7
Upload files	File_1003.pdf

Record RF parameters in on mode again

From SCU Webpage:

DEE voltage ref [V]	8
DEE voltage read 1 [V]	5
DEE voltage read 2 [V]	4
RF fwd voltage [Vrms]	0
RF reflected voltage [Vrms]	96
DPA RF FWD voltage [Vrms]	8
FWD power [kW]	45
Reflected power [kW]	0
Anode voltage [kV]	98
Anode current [A]	45
Grid voltage [V]	8
Grid current [A]	4
Screen voltage [V]	8
Screen current [mA]	5
Heater voltage [V rms]	32

DEE voltage set [kV]	1
DEE voltage read [kV]	3
Delta DEE voltage set [kv]	2
Delta DEE voltage read [kV]	4
FWD power [kV]	87
Reflected power [kV]	5
Flap I start [%]	9.0
Flap I position [%]	6.0
Flap II start [%]	5.0
Flap II position [%]	2.0
Turn RFPG off	

Cabinets PSMC

PSMC
Inspect for water leaks, burn marks and broken parts, Check and tighten all terminal screws

Verify the resistance values with the installation tester

Resistance between negative and positive [Ω]	Resistance between negative and ground [MΩ]	Resistance between positive and ground $[\mbox{M}\Omega]$
65	41	2

Real time mesurements
Install multimeter probes on positive and negative, guide them through the air outlet grid, connect oscilloscope, Install back all covers

Record on sequence ramping speed	Record on sequence ramping up time to maximum	Record on sequence ramping up time to configuration value
5	4	2

Verify PSMC performance for H-config value

Set current	9
Output current [A]	4
Voltage read PSS [V]	2
Coil voltage [V]	5
Firing sequence [number of peaks in 20ms]	9
Ripple [mV rms]	6

Verify PSMC performance for 499A

Set current	5
Output current [A]	7
Voltage read PSS [V]	4
Coil voltage [V]	12
Firing sequence [number of peaks in 20ms]	0
Ripple [mV rms]	1

Verify PSMC performance for 250A

Set current	2
Output current [A]	85
Voltage read PSS [V]	0
Coil voltage [V]	4
Firing sequence [number of peaks in 20ms]	9
Ripple [mV rms]	6

Verify PSMC performance for 50A

Set current	4
Output current [A]	5
Voltage read PSS [V]	1
Coil voltage [V]	78
Firing sequence [number of peaks in 20ms]	5
Ripple [mV rms]	6

Turn off PSMC and measure off sequence ramping down time	\checkmark

Cabinets ACU

Record ACU voltages	Record ACU voltages	Record ACU voltages	Record ACU voltages GND /	Record ACU voltages
GND_IO / 24	GND_IO / +15V	GND_IO / -15V	+5V	Chassis / GND_IO
1	5	4	2	5

Cabinets PDU

Visual inspection	

Pictures			
Image	Comments		
Image_1002.jpg	cf		
Check and tighten all terminal screws			

Record H2 gas pressure

Set point [SCCM]	Reading at MFC [bar]	
1	2	

Turn on Magnet, set probe in, turn on RF, turn on gas.

Magnet current [A]	DEE1 voltage [kV]	DEE2 voltage [kV]	Gas flow [sccm]	If ion source was maintained, perform ion source conditioning (ramp up from 30 mA to 100 mA in 30 minutes and from 100mA to 200mA in 10 minutes)
3	0	4	5	\checkmark

Record Ion Source Performance

IS current [mA]	IS voltage [V]	Flip in probe current [µA]
45	2	498

Paper Burn Test

Install paper burn target	
Perform paper burn test in SB and DB	

Install paper burn target			
Image_1009.jpg			
If needed, adjust collimators and repeat 565			

Identifier	LTF4		
LTF	Replace target water-18 peek line and connectors		
Inspect the movement of all LTF compressed air actuators	V4,Syringe		
Starting pressure [psi]	Pressure drop [psi / h]		
5	9		
If needed: Perform target fill tests and adjustment for each target	4		
If needed, adjust and repeat test, record adjustment value	6		

Pictures				
Image	Comments			
Image_1007.jpg	asd			

Autoshield

Check compressor oil level and operational hours 12.0			
Autoshield	Refill oil if under low level mark or every 3000 operational hours,Manuall drain the the air tank and the air manifold to evacuate condensated water,Verify the air tank relief valve operation, repair/replace as required		
Verify tank water level and float switches functionality, top up water level/repair and/or replace switches as required			
Verify functionallity of micro switches for: Door closed			
Read and record door lift timing for left door	2.0		
Read and record door lift timing for right door	65.0		
Verify functionallity of skirt microswitches and that the skirts seats properly on the micro switches			
Verify tightening of the upper and the lower socket heads screws	\checkmark		
Check the hinges of left and right door	\checkmark		

Autoshield Upper

Read and record upper manometer lifting pressures

K1	К2	К3	K4	K5	K6
1.0	5.0	0.0	9.0	3.0	1.0

Autoshield Lower

Read and record lower manometer lifting pressures

К1	K2	К3	K4	K5	K6
7.0	5.0	6.0	0.0	92.0	4.0

Pictures		
Image	Comments	
Image_1002.jpg	sgs	

Beam Conditioning

Photo name	Add Comment
Image_1005.jpg	No comments

PMDebriefing

Record additional tasks performed not recorded elsewhere	Record open tasks and issues	Record spare parts / consumables to be ordered	Record work	er dosimetry
Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's	It is a long established fact that a reader will be distracted by the readable content of a page when	when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived	Name	Total Dose [uSv]
standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book	looking at its layout. The point of using Lorem Ipsum is that it has a more-or- less normal distribution of letters	not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged.	name name name	465