Pre-Maintenance

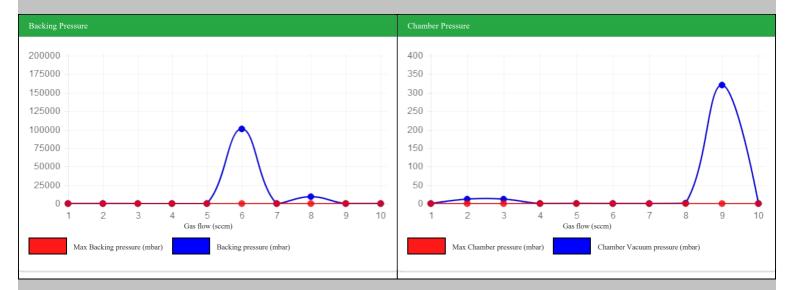
Usage/Calendar based maintenance (UBM/CBM)

NOTE! Refer to the PETtrace Service Ma	nual - Maintenance (direction 2169049-100) for det	niled instructions, apply LOTO and use PPE.
System ID:	NE209962	
N# - : 4	- Atom Alter Alter Alter DETAiner - Country Monard	Maintenance (dimension 21(0040 100) (dimension

Maintenance performed in accordance with instructions as outlined in the PETtrace Service Manual - Maintenance (direction 2169049-100) (signature (typed and signed)):

K

Location	Actio	Labor time (min.)	Sign.	For only optional operations note down if the operation is performed or not			
Vacuum	NOTE! Hydrogen gas flow should be on as for • Read and record the vacuum pressure • Perform a BEV leak check : open the BEV for 2 again the BEV, the vacuum value must not reach the	50		coments optionals operations			
	Vacuum pressure readout	Gas flow(sccm):	4.0				
	Gauge number	Pressure (x10-) without gas	Pressure (x with ga				
	A1 (4 on TCS 1001)	. 0,0006	0,31				
	A2 (13 on TCS 1001)	: 0,00004	0,35				
	B1 (14 on TCS 1001)	: 0,043	0,3431				
	TPG parameters						
		Low limit (x10-)	v limit (x10-) High limit (x10-)				
	A1	: 0,29	0,8				
	A2	: 0,90	0,1				
	B1	: 0,32	0,32				
	• Press OFF on the VCU, followed by VENT, rea	d and record the cu	urrent VENT time				
	Vacuum VENT time						
	System software						
	Subsytem Versio	n					
	Master: 3,6	-					
	ACS.	-					
	Service System.	-					
	Manager: ^{TSA} Informix (only applicable to SUN- Master Station):	-					
	VENT time	2022-07-20					

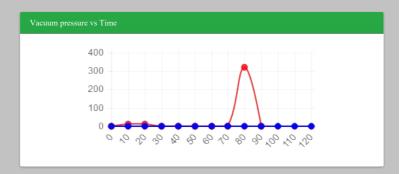

Comments:	coment n1
PHOTO:	

Test of vacuum tightness on PSS

Plot vacuum pressure as function of gas flow from 1sccm to 10 sccm. Vacuum pressure vs gas pressure should be a linear relationship.

Gas flow setting: 5,0 +/- 1 sccm

Gas flow	Chamber vacuum pressure	Backing pressure	Max Chamber	Max Backing pressure (mbar)
Gas now	(mbar)	Dacking pressure	pressure (mbar)	Wax Dacking pressure (moar)
1	2.9E-6	0.012	3,60E-06	1,30E-02
2	12	32	6,10E-06	2,10E-02
3	12	0.220001	8,90E-06	2,70E-02
4	0.3001	2.11E-5	1,10E-05	3,30E-02
5	0.3201	0.0101	1,30E-05	3,90E-02
6	0.1002	101100	1,50E-05	4,50E-02
7	9.0E-6	13	1,60E-05	4,70E-02
8	1.321	9312.12	1,80E-05	5,40E-02
9	321.12	9.132	2,00E-05	5,90E-02
10	0.123	9.123	2,20E-05	6,50E-02
OK value	Too low value			


Pass critera: Linear relationship between vacuum pressure and gas flow. (Blue line should be below red line)

Vacuum leak test performed on PSS

With the vacuum system operating in pump mode with all BEV closed and without gas flow.

Set Vacuum system on VCU to Standby and observe the leak rate into the cavity (using pressure as proxy)

Time from Set Standby (sec)	Vacuum pressure (mbar)	Max leak rate
0	12	1,80E-07
10	0.123	1,00E-06
20	0.1	1,50E-06
30	1.231	1,90E-06
40	0	2,30E-06
50	0.132	2,70E-06
60	0	3,00E-06
70	1231	3,30E-06
80	1.12313	3,60E-06
90	132.123	3,90E-06
100	123	4,20E-06
110	132.01	4,60E-06
120	0	4,90E-06

Pass critera: Time to reach 1.0E-5 mbar > 10 s (Blue line should be below red line)

Vacuum	Switch on the water cooling to the diffusion pump
	Press STANDBY on the VCU, record time
	Standby time
	Actual standby start time: 10:27
	Verify that the green DP-lamp on the VCU lights up within 30min, re-adjust DP temp-switch as required
	DP-lamp activation time
	DP -lamp activated in (min): 0 Max 30min
	Press PUMP on the VCU and note the following values:

Pumping down			
Time before HVV opening	11	10-15 min	
Actual time for HVV opening:	0	<30s	
Actual time to reach 1.0*E-5	0		
• After reaching the vacuum value of 1.0*E-5 open the IS gas flow at 10sccm	for 15	minutes	

* 7								
Vacuum	WARNING! Diffusion pump may be very warm, verify that at least 2hrs has passed since pump shutdown.							
	WARNING! Rotary and/or diffusion pump oil may be radioactive, verify activity level by performing an activity survey!							
	NOTE! Verify that all cables are free from interference with the diffusion pump, interference may cause cab	le melting and/or electrical						
	shortcut							
	• Verify the oil level and the color of the rotary pump oil, re-fill or change as required, record re-filled or changed volum	e						
	Rotary pump oil level							
	Date of the last replacement of oil: 2022-11-07							
	Volume filled/changed (ml): 0							
	Maintenance of the diffusion pump: to be performed every 5 years							
	Last maintenance of the diffusion pump							
	Ventilate the diffusion pump by removing Pirani 1							
	NOTE! Verify that the water cooling is shut off before disconnection of the diffusion pump							
	• Remove the diffusion pump and drain the oil							
	NOTE! Measure the lenght of the Jet assy before it is disassembled. The lenght is critical to pump perform	nance.						
	• Disassemble and clean the diffusion pump							
	Replace the heater							
	Reassemble, reinstall and fill the diffusion pump with new oil							
	Diffusion pump oil replacement							
	Volume filled/changed (ml): 0							
	• Verify the condition of the rotary pump oil mist filter, clean, inspect or replace as required							
	• Verify the condition of the rotary pump oil mist filter O-ring, clean, inspect for damage and/or deformation, replace as	required						
	• Verify the functionality of the pirani gauges and the penning gauge, clean, inspect or replace as required							
Comments:	coment 2							

Comments: PHOTO:

Chamber

Survey	Date: 2022-07-20				Time: 12:40						
EOB	Date: 202	22-07-20	Time: 12:40			H: 190 Time after EOB i			fter EOB in ho		
Survey point	1	2	3	4	5	6	7	8	9	10	
Probe dose rate (mSv/h)	81.0	67.0	23.0	38.0	19.0	64.0	86.0	24.0	125.0	71.0	

Targets	• Disconnect all targets fi	Disconnect all targets from the service PC								
	• Switch off the manual water valves to the targets on the water manifold (the large wall mounted water manifold)									
	NOTE! 18F2 Deuteron target system requires NEON gas flushing before opening of connections.									
	NOTE! 18F2 Proton ta	arget system requires ARG	ON gas flu	shing X 3 before opening	of connections.					
	NOTE! Do not disconn	nect the C11CH4 target, an	y atmosphe	re entering this target ma	ay ruin the target.					
	Verify condition and fur BEV & Compressed air	Il targets from the cyclotron a nctionallity of the beam exit v Tubing: annual replaceme	alves (BEV), ent for BEV	, repair or replace as required / 3 years replacement for	l air tubing					
	Target position	T1	T2	Т3	T4	Τ5				
	Date of the last BEV replacement:	NA1	NA3	NA5	NA7	NA9				
	Action Performed (Y/N)	tion Performed N Y N Y N								
	Date of the last compressed air tubing	NA2	N4	NA6	NA8	NA0				

	replacement					
	Action Performed (Y/N)	Υ	Ν	Y	Ν	Y
Cyclotron	WARNING! Pinch hazar		trons chassis:	remove them, inspect for d	amage and if damaged re	place them, otherwise put them
		or bolt, inspect for damage. I functionality, the play betwee				ed for installation.
	Yoke to magnet play					
	Recorded play (mm):	5	Limit 2- 10mm			
RF flaps		e function, calibrate, repair		e as required, read and reco	rd the current	
	Flap motor current	Flap 1	Flap 2			
	Recorded current (mA):	80	198			
		play, readjust as required, re	ad and record			
	Flap to DEE play					
	Flap number	0% (4mm +0,5/-0)	50% (>4 -	100% (>26mm)	Working Position	
	1:	4.34	<2mm) 11.71	32.1	3,123	
	2:	3.21	3.21	5.43	452	
Central region	 Verify the DEE tip condi 	tion, replace if worn and/or	-			
	• Read and record ion sou		per burn to v	verify beam position in ta	rget.	e-read and record the adjustment
	Ion source adjustment (Recorded distance (mm)) Typically			
	Location	After	(mm)			
	A:	1	0,9-1,2			
	B:	1	0,3-0,5			
	C: D:	1	0,4-0,6			
		lition, position, insulation an		, reposition and/or replace a	s required, read and recor	·d
	Flip-in probe insulator s		ž		1 [']	
	Recorded reading		Typically			
the second s						
	(kΩ):	29.5	29,4kΩ			
		29.5 ettings, adjust as required (r	29,4kΩ	l factory settings, if adjuste	d re-read and record	
			$29,4k\Omega$ efer to origina			
	• Read and record DEE so		29,4kΩ efer to origina Thickness	Theoretical midplane	Actual midplane from	Variance (max 0,5mm)
	Read and record DEE so DEE settings Measurement point	ettings, adjust as required (r Height (mm)	29,4kΩ efer to origina Thickness (mm)		Actual midplane from pole (mm)	Variance (max 0,5mm) -16.2
	Read and record DEE so DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner	ettings, adjust as required (r	29,4kΩ efer to origina Thickness	Theoretical midplane from pole (mm)	Actual midplane from	
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner	ettings, adjust as required (r Height (mm) 46.20	29,4kΩ efer to origina Thickness (mm) 33.20	Theoretical midplane from pole (mm) 30	Actual midplane from pole (mm) 46.2	-16.2
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D):	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33	Theoretical midplane from pole (mm) 30 58 30 30 30	Actual midplane from pole (mm) 46.2 74.1	-16.2
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E):	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10 74.10	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33 33.45	Theoretical midplane from pole (mm) 30 58 30 30 30 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1	-16.2 -16.1 -17.1 -16.1 -16.1
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F):	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33	Theoretical midplane from pole (mm) 30 58 30 30 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G):	ttings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30 58 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.89	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 upper corner (G): Dee2 upper tip (H):	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89 74.31	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.45 33.70 3.43 334.10	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1	-16.2 -16.1 -17.1 -16.1 -16.1 -17.1
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I)	ttings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30 58 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.89	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 1 connecting block (J)	ettings, adjust as required (n Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89 74.31 10.05 102.00	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.45 33.70 3.43 334.10 NA NA	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30 58 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.89	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 (K)	ttings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89 74.31 10.05	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.50 33.45 33.45 33.70 3.43 334.10 NA	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30 58 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.89	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 (K)	ttings, adjust as required (r Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89 74.89 74.31 10.05 102.00 101.00	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.45 33.70 3.43 334.10 NA NA NA NA	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30 58 30	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.89	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89
	Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 lower corner (C): Dee2 lower tip (E): Dee2 lower corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 connecting block (L) NOTE! Do not touch o	ettings, adjust as required (n Height (mm) 46.20 74.10 47.10 46.10 74.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.45 33.70 3.43 334.10 NA NA NA NA	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.89	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89
Extraction	 Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 2 connecting block (J) Stem 2 connecting block (L) 	Height (mm) 46.20 74.10 47.10 47.10 47.10 74.10 10.05 102.00 101.00 102.00 rclean the DEE pick ups	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43 33.45 33.70 3.43 NA NA NA NA NA	Theoretical midplane from pole (mm) 30 58 30 30 58 30 58 30 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 2 (K) Stem 2 connecting block (L) NOTE! Do not touch o Verify thightness of the 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 46.10 74.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.45 33.70 3.43 334.10 NA NA NA NA NA NA NA	Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 lower corner (F): Dee2 lower tip (E): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 2 (K) Stem 2 (K) Stem 2 connecting block (L) NOTE! Do not touch o Verify thightness of the Verify functionality and 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches,	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43 334.10 NA NA NA NA NA NA NA Saturation Saturation	Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 tip lower (D): Dee2 lower tip (E): Dee2 lower corner (F): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 (K) Stem 2 connecting block (L) NOTE! Do not touch o Verify foil condition, in Verify functionality and Verify capton cable condition 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 47.10 47.10 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches, dition, repair and/or replace	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.30 33.45 33.70 3.43 334.10 NA NA NA NA Iace the carous repair and/or r as required	Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Dee1 tip top (A): Dee1 upper corner (B): Dee1 lower corner (C): Dee1 lower corner (C): Dee1 lower corner (C): Dee1 lower corner (F): Dee2 lower tip (E): Dee2 upper corner (G): Dee2 upper tip (H): Stem 1 (I) Stem 2 (K) Stem 2 (K) Stem 2 (K) Stem 2 (K) Stem 2 connecting block (L) NOTE! Do not touch o Verify foil condition, in Verify foil condition, and Verify foil condition and Verify capton cable come Verify carousel turn mediation 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches,	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43 334.10 NA	Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 47.1 46.1 74.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Deel tip top (A): Deel upper corner (B): Deel lower corner (C): Deel tip lower (D): Deel tip lower (D): Deel lower corner (F): Deel lower corner (F): Deel upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 connecting block (L) NOTE! Do not touch o Verify foil condition, in Verify capton cable cone Verify that the carousel 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches, dition, repair and/or replace chanism functionality, repair insulation, repair and/or replace	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43 334.10 NA	Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 47.1 46.1 74.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Deel tip top (A): Deel upper corner (B): Deel lower corner (C): Deel tip lower (D): Deel tip lower (D): Deel lower corner (F): Deel lower corner (G): Deel upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 connecting block (L) NOTE! Do not touch o Verify thightness of the Verify capton cable context Verify that the carousel 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches, dition, repair and/or replace chanism functionality, repair insulation, repair and/or replace	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.30 33.45 33.70 3.43 334.10 NA Stationaria Stationaria <tr< td=""><td>Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58</td><td>Actual midplane from pole (mm) 46.2 74.1 47.1 47.1 46.1 74.1 74.89 74.31</td><td>-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31</td></tr<>	Theoretical midplane from pole (mm) 30 58 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 47.1 46.1 74.1 74.89 74.31	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Deel tip top (A): Deel upper corner (B): Deel lower corner (C): Deel tip lower (D): Deel tip lower (D): Deel lower corner (F): Deel lower corner (G): Deel upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 connecting block (L) NOTE! Do not touch o Verify thightness of the Verify carousel turn means of the carousel Verify that the carousel 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 46.10 74.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches, dition, repair and/or replace chanism functionality, repair insulation, repair and/or rep pund resistance) ctraction 1 (carousel to ca ctraction 2 (carousel to ca	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.50 33.45 33.70 3.43 33.45 33.70 3.43 33.410 NA NA NA NA NA NA NA SA SA SA SA SA SA SA SA SA SA SA SA SA	Theoretical midplane from pole (mm) 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.31 74.31 a ce Typically 29.4kΩ Typically 29.4kΩ	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31
Extraction	 Read and record DEE settings Measurement point Deel tip top (A): Deel upper corner (B): Deel lower corner (C): Deel tip lower (D): Deel tip lower (D): Deel lower corner (F): Deel lower corner (G): Deel upper tip (H): Stem 1 (I) Stem 1 connecting block (J) Stem 2 connecting block (L) NOTE! Do not touch o Verify thightness of the Verify capton cable context Verify that the carousel Carousel insulation (grown Recorded resistance expression) 	ettings, adjust as required (r Height (mm) 46.20 74.10 47.10 47.10 47.10 74.89 74.31 10.05 102.00 101.00 102.00 r clean the DEE pick ups DEE and the stem screws, r case of >3 broken foils; rep status of the limit switches, dition, repair and/or replace chanism functionality, repair insulation, repair and/or rep pund resistance) ctraction 1 (carousel to ca	29,4kΩ efer to origina Thickness (mm) 33.20 33.10 33.50 33.10 33.50 33.10 33.43 33.45 33.70 3.43 334.10 NA A	Theoretical midplane from pole (mm) 30 58 30 58 30 58 58 58 58 58 58 58 58 58 58 58 58 58	Actual midplane from pole (mm) 46.2 74.1 47.1 46.1 74.1 47.1 47.1 74.31 74.31 adduction of the state of the stateo	-16.2 -16.1 -17.1 -16.1 -16.1 -16.1 -17.1 -16.89 -16.31

	Extraction and balance	motor current				
		m recorded current extract	tion 1 (mA):		Limit 50-200 mA	
		m recorded current extract			Limit 50-200 mA	
C 111		imum recorded current ba			Limit 100-300mA	
Collimators	• Verify collimator condition	tion, openings, re-adjust, repai	ir and/or repl	ace as required, read and rec	cord insulation	
	Collimator readings					
		Insulation (recorded	Horizontal			
	Collimator position	ground resistance) (typically 29,4kΩ)	opening	Vertical opening (mm)		
	1 (lower)	(typicany 29,4KS2) 29	(mm) 132	12		
	1/2	156	15	12	-	
	2/3	18	51	321		
	3/4	18	65	186		
	4/5	864	18	68	-	
	5/6	18 68	68 18	48	-	
	6 (upper) • Verify target clamps ins	sulation, repair and/or replace		**		
			us required,			
	Target clamps insulatio					
	Target clamp position	Recorded resistance (typically 20,4kΩ)				
		15	-			
	T2	32				
	Т3	17				
	Τ4	1				
	T5	23				
Tank	T6		n ovide (snu	ttered) foreign material and	Vor other contamination	replace parts as required and
1 anix	document by photo	, burned, covered by araminar	in oxide (spu	ttered), foreign material and	or other containination,	replace parts as required and
	• Verify that no damage	contamination and/or deform	ation are pre	cent on the vacuum tank ou	ing replace as required	, otherwise clean and regrease
			-			_
	• Verify that the finger co	ontacts are properly secured in	n place and t	hat no damage and/or defor	mation are present, reins	stall and/or replace as required
	• Verify that the silicon b	affles are properly fitted and	tightly secur	ed at their locations and that	t no damage are present,	tighten and/or replace as required
	• Verify that the the scree if required tighten and/or		e covers at t	he top right inside of the tar	nk are securely attached	and that no damages are present,
**7 . 1*		-			1	
Water cooling		y water cooling (Swedewater)				
	• Verify that no leaks are and/or replace as require		d (target pan	el), the magnet connections	, the RF system, the ion	-source system, the PSMC, repair
	• Verify the condition of	the water cooling lines for the	e targets, if ha	ard or brittle, replace as requ	uired	
	• Turn off the main water	r cooling pump on the second	ary water co	oling system (Swedewater)	(optional: perform only	in case of cooling problems)
	• Inspect and replace filt	er Z2 at the Swedewater (opt	ional: perfori	n only in case of cooling pro	blems)	
	• Inspect and clean filter	Z1 and Z3 at the Swedewate	r (optional: r	perform only in case of coolin	ng problems)	
						replace the ion exchanger resin
	(normally once a year)	ity and now at the Swedewald	, ii conduct	ivity error has becarred bee	uns during production, i	epiace the foll exchanger reshi
	• Off mode: Verify water	r level and pressure at the Swo	edewater, re-	fill and/or adjust as required	d, read and record	
	Secondary water coolin	g system (Swedewater) sys	tem off data	a		
		Water volume filled (ml):	341	If fill is not required, ma	rk N/R	
		sure compressed air (kPa):		Limit 40-200 kPa		
		cooling system readings, adju	-	u, reau and record		
	Secondary water coolin data	ng system (Swedewater), sy	stem on			
	E	xpansion vessel BP1 (bar):				
		pump pressure BP2 (bar):				
		ump BP3 (bar) (if present):				
		nperature BT1 (degree C): perature alarm (degree C):		•		
		nperature BT2 (degree C):				
		nperature BT3 (degree C):				
	Deor	nizer flow BF10 (liter/min):	1,5			
		onductivity BQ1 (µS cm-1):	0,142			
Targets	• Replace LTF peek (Opt		1 1 1.4			
A 1		the water cooling tubes, if har	u or brittle, r	epiace as required		
Annual maintenance:	For the PDU, yearly chee					
Check of the		op the swedewater pump and		f the power of the PDU		
PDU terminal screws	_	net for electrical interventions				
		then the terminal screws inside	de the PDU			
End of inside- bunker	• Install the paper burn ta	arget				
operations	• Verify the sealing of the	e target gasket				

• Close the bunker before restart the vacuum

Comments: coment n3
PHOTO:

MAINTENANCE TRACKING TOOL

Beam

_							
Beam	• Perform a paper burn test in DB for both targets						
	Dismount the paper burn targets and put the standard targets in place						
	• Check the He flow inside flowmeters fot both target in SB and DI	the He flow inside flowmeters fot both target in SB and DB and close the bunker					
	 At the Service System: Connect targets and verify target vacuum At the Service System: Select FILL TARGET (for F18 target sele accordance with the specification for the specific target type, adjust Verify that the vault door are closed 	ect: O16 water) and verify the fill volume verify that, repair and/or replace as required					
	 Connect the Service System to the ACU and power up the Service System, set the master to local and log in to the Service System NOTE! Only Service System: BEAM CONTROL and TARGET pages are to be utilized. Start the water cooling, verify vacuum system status at the VCU, set magnet to on and set configuration value Set RF to STANDBY, select target and set the extraction foil to the selected target position, park the other extraction foil Set the flip-in probe to: IN, select H- particle, set RF to NORMAL Verify Ion-source gas, turn on the Ion-source and set to 50mA, verify current on the flip-in probe and set flip in probe to OUT NOTE! Maximum collimator and tuning (extraction foil current) current is 10µA. Read and record the target, the foil, the collimator current, adjust the extraction foil until equal collimator current is achieved Adjust the magnet current, the RF DEE voltage, the RF delta DEE voltage, the extraction foil current and the gas flow to achieve optimal beam 						
	Beam performance						
	Beam performance	H-					
	Magnet current (A):	430					
	DEE voltage :	34					
	Delta Dee Voltage	1					
	Ion source current (mA):	98					
	Ion source voltage (kV):	1012					
	Gas flow (sccm):	4					
	Flip-in probe current (IFLIP (µA)):	89,3					
	Target 1 position/type:	31,6					
	Target 2 position/type:	7,1					
	Foil 1 current	30					
	Foil 2 current	30,6					
	Collimator lower 1 current	1,6					
	Target 1 current	25,8					
	Collimator upper 1 current	1,7					
	Collimator lower 2 current	2,4					
	Target 2 current	25,9					
	Collimator upper 2 current	1,7					
	Target 1 beam width (Col lower+Col upper / Itarget in%)	2,4					
	Target 2 beam width (Col lower+Col upper / Itarget in%)	25,9					
	Extraction foil current (IEXT (µA)):	2					
	Transmission Target 1 = ITAR/Ifoil	12,7					
	Transmission Target 2 = ITAR/Ifoil	16,99					
	Acceleration Efficiency = Ifoil/Iprobe (H > 60%)	61,65					
	ISEFFICIENCY=IFLIP/IARC (H- >0.20, D- >0.10) (μA/mA):	1,00					
	Water cooling system (Swedewater), with beam-on						
	Expansion vessel BP1 (bar):	58					
	Main pump pressure BP2 (bar):	45					
	Vacuum cooling pump BP3 (bar):	62					
	System temperature BT1 (degree C):	15					
	Cooling water out temperature BT2 (degree C):	74					
	Cooling water out temperature BT2 (degree C): Cooling water in temperature BT3 (degree C):	12					
	Deonizer flow BF10 (liter/min):	4					
	Conductivity BQ1 (µS cm-1):	155					
	Water cooling system (Swedewater), with beam-on						
	External temperature						
		Valve position					
	Cyclotron in standby condition	Provident Provident					
	Cyclotron in standby condition						

	After 1 hour of irradiation	1.2589999999999999	
	After 2 hour of irradiation	1.2	
Comments:	coment n4		
PHOTO:			

ACU

ACU NOTE! If readings are out of specification, the problem cou • Verify ACU voltages	NOTE! If readings are out of specification, the problem could come from the power supply or a ground fault. • Verify ACU voltages					
ACU voltages	ACU voltages					
Test point	Reading	Range				
GND_IO (24V):	24.02	+24 ± 1,2				
GND_IO (+15V):	15.08	$+15 \pm 0,75$				
GND_IO (-15V):	-15.08	$-15 \pm 0,75$				
GND (+5V):	4.77	+5 ± 0,25				
Chassis (GND_IO):	0.22	<1V				

Comments:	coment n6
PHOTO:	

MAINTENANCE TRACKING TOOL

PSMC

	Open the PSMC back door and remove one of its side covers					
• Verify that the PSMC has no water leaks, loose cables, burn marks or broken parts, verify air filter condition, adjust and/or replace as required						
Verify the PSMC resistance values, read and record						
PSMC resistance						
Resi	stance between negati	ve (-) and positive (+) (Ω): 11.00			
	Resistance between po	ositive (+) and ground (Ω): 1.00			
	Resistance between ne	egative (-) and ground (Ω): 1.00			
WARNING! High power and current						
• Switch on the PSMC power						
• Ramp up the magnet to the H- configuratio	n value, read and record	the ramping time				
Magnat youning up acquares						
Magnet ramping up sequence	On seguence r	ramping speed (A/second): 1.00	Typicall		
	*			Typically		
On se	equence ramping up til	me to maximum (minutes	a): 1.00	30s		
On sequence ramping up time to configuration value (seconds): 1.00						
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v 	adjust and/or repair as re	equired, read and record				
• Verify PSMC output current and voltages,	adjust and/or repair as re oltage reading during 10	equired, read and record	re than 0.1 V)			
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter	adjust and/or repair as re roltage reading during 10 PSMC H- ou 10%	equired, read and record seconds should not vary mo	re than 0.1 V)	H- config		
Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10%	equired, read and record seconds should not vary mo tput current and voltages 50%	re than 0.1 V)	H- config		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1) 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10%	equired, read and record seconds should not vary mo tput current and voltages	re than 0.1 V)	H- confi		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): 	adjust and/or repair as re roltage reading during 10 PSMC H- ou 10%	equired, read and record seconds should not vary mo tput current and voltages 50%	re than 0.1 V)	H- confi		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00	equired, read and record seconds should not vary mo tput current and voltages 50% 1.00	re than 0.1 V)	H- confi		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00	equired, read and record seconds should not vary mo tput current and voltages 50%	re than 0.1 V)	H- config		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS (10% 50±1, 50% 250±1, 100% 499±1 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00	equired, read and record seconds should not vary mo tput current and voltages 50% 1.00	re than 0.1 V)	H- confi		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS (10% 50±1, 50% 250±1, 100% 499±1 A): 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00	equired, read and record seconds should not vary mo tput current and voltages 50% 1.00	re than 0.1 V)	H- confi		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Voltage read PSS (10% 12±1, 50% 41±1, 100% 80±1 VDC): 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00 1.00 1.00	rquired, read and record seconds should not vary mo tput current and voltages 50% 1.00 1.00	re than 0.1 V) 100% 1.00 1.00	H- config		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Voltage read PSS (10% 12±1, 50% 41±1, 100% 80±1 VDC): 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00 1.00 1.00	rquired, read and record seconds should not vary mo tput current and voltages 50% 1.00 1.00	re than 0.1 V) 100% 1.00 1.00	H- config		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Voltage read PSS (10% 12±1, 50% 41±1, 100% 80±1 VDC): Coil voltage (10% 7±1, 50% 40±1, 100% 80±1 VDC): 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00 1.00 1.00	rquired, read and record seconds should not vary mo tput current and voltages 50% 1.00 1.00	re than 0.1 V)	H- config		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A); Current PSS (10% 50±1, 50% 250±1, 100% 499±1 A); Voltage read PSS (10% 12±1, 50% 41±1, 100% 80±1 VDC); Coil voltage (10% 7±1, 50% 40±1, 100% 80±1 VDC); 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00 1.00 1.00 1.00 1.00	rquired, read and record seconds should not vary mo tput current and voltages 50% 1.00 1.00	re than 0.1 V)	H- config		
 Verify PSMC output current and voltages, Verify PSMC voltage regulation stability (v Parameter Current setting PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Current PSS (10% 50±1, 50% 250±1, 100% 499±1 A): Voltage read PSS (10% 12±1, 50% 41±1, 100% 80±1 VDC): Coil voltage (10% 7±1, 50% 40±1, 100% 80±1 VDC): 	adjust and/or repair as re oltage reading during 10 PSMC H- ou 10% 1.00 1.00 1.00	rquired, read and record seconds should not vary mo tput current and voltages 50% 1.00 1.00 1.00	re than 0.1 V) 100% 1.00 1.00 1.00 1.00	H- config		

	Magnet rampi	ing down sequence				
		Off sequence ramping down (min)	es):	11.00	Typically 1 minute	
	 NOTE! Do not forget to connect the ground wire to the side cover/s. Close the PSMC back door and reinstall the side cover/s, switch on the PSMC power Verify fan and interlock functionality, adjust, repair and/or replace as required 					
Comments:	(coment n5				
PHOTO:						

RFPG

WARNING! High voltage (up to +	7800V D	С).				
• Switch off the power to the RFPG						
• Open the TAU and verify that the grounding device is operational (completely in contact with the RF tube). Verify that no burn marks, loose cables or leaking water are present, clean, repair and/or replace as required, close the TAU						
• Open the GSPU and verify that no b	PU and verify that no burn marks or loose cables are present, clean, repair and/or replace as required, close the GSPU					
• Open the DPA and verify that no bu	rn marks,	marks, loose cables or leaking water are present, clean, repair and/or replace as required, close the DPA				
• Replace the RFPG air inlet filters, cl	G air inlet filters, clean the front grid cover, inspect the grid of the back of the cabinet, clean if required					
WARNING! High voltage (up to +7800V DC). It is important to discharge components before removal of rectifier diode/s.						
• Open the TPSU, verify TPSU diode status (48 diodes), diode bridge should read 0,8-0,9V forward voltage drop from negative (-) pin to positive (+) pin. A defective diode bridge will read close to/or 0V, repair and/or replace as required						
• Verify tightness of the TPSU termination	al screws 7	ГВL 1, TBL 2, TBL 3, tight	ten and/or replace as required, close th	eTPSU		
• Verify water cooling pressure, repair	r and/or re	place as required, read and	record			
RFPG water cooling pressure						
			Pressure reading (bar): 2.50			
• Switch on the RFPG and verify the f	unctionali	ty of the RFPG fans, repair	and/or replace as required, reinstall all	l covers		
• Open the DPSU, visually verify that	no compo	onents are loose or appears	to be damged, repair and/or replace as	required		
• Verify the voltage output in the DPS	U, adjust,	repair and or replace as req	uired, read and record. Re-install the	DPSU		
DPSU voltage						
Parameter Voltage Ripple (peek to peek) Voltage limits/ripple limit						
+48V (V1):		47.81	1.34	47.5-48.5 VDC/200mV		
Verify SCU functionality for H-, adjust, repair and/or replace as required, read and record						
H-, at the PSS magnet page: switch on the water cooling and the magnet, set the magnet to the H- configured value, read and record the OFF value as displayed on the measurement module/ the PSS						
H-, at the PSS RF page: Select STANDBY, after 1 minut RF state should be: STANDBY READY, read and record the STANDBY value as displayed on the measurement module/the PSS						
Verify VAC voltage and ripple at the load phase detector board						
H-, at the PSS RF page: Select NORM module/the PSS, in case of any signifi	· · · · · · · · · · · · · · · · · · ·			lisplayed on the measurement		
When finished, download the statistics C:\backup\scu.	log, the tv	vo milliseconds logs and the	e five seconds log.Save the log files in	the backup folder in the service laptop,		
If there are any significant change in a repair and/or replace as required	ny value, i	investigate the reason. Pay	special attention to the analog in voltag	ges, humidity and temperature, adjust,		
If there are any significant change in a repair and/or replace as required	If there are any significant change in any value, investigate the reason. Pay special attention to the analog in voltages, humidity and temperature, adjust,					
At the PSS RF page: Select STANDBY, RF shall change state to: STANDBY READY						
SCU readings						
PSS			RFPG status			
			H- (35kV)		
Parameter/unit		Off/standby				
			0 hour	0.5 hour		

3.00

3.00

33.00

33.00

33.00

33.00

DEE voltage read 1 (V):

DEE voltage read 2 (V):

RF fwd voltage (V rms):	3.00	3.00	33.00
RF reflected voltage (V rms):	3.00	3.00	333.00
DPA RF FWD voltage (V rms):	3.00	3.00	3.00
FWD power (kW):	3.00	33.00	33.00
Reflected power (kW):	3.00	33.00	33.00
Anode voltage (kV):	33.00	33.00	33.00
Anode current (A):	333.00	33.00	333.00
Grid voltage (V):	333.00	3.00	3.00
Grid current (A):	33.00	3.00	3.00
Screen voltage (V):	33.00	33.00	33.00
Screen current (mA):	33.00	33.00	3.00
Heater voltage (V rms):	3.00	33.00	3.00
PSS readings			
DEE voltage set (kV):	34.00		
DEE voltage read (kV):	34.00		
Delta DEE voltage set (kV):	1.00		
Delta DEE voltage read (kV): 34.00			
FWD power (kW):	8.00		
Reflected power (kW): 0.10Phase error (degrees): 4.00			
H- start flap I (%):	28.00		
H- start flap II (%):	23.00		
D- start flap II (%):	55.00		
D- start flap I (%):	55.00		
Voltages on load phase detector board			
Parameter	Recorded voltage	Ripple peak to peak	Voltage limits/ripple limit
3.3V	3.27	1.12	3.2V-3.5V/50mV
TP1 +15V (V3+):	14.92	2.10	13,5-16,5VDC/50mV
TP2 -15V (V4-):	-15.10	2.34	-16,513,5VDC/50mV
TP3 +5V (V1+):	5.15	4.82	4,5-5,5VDC/50mV
TP4 +24V (V2+):	23.70	24.18	21,6-26,4VDC/50mV

Comments:	cioment n7
PHOTO:	

Ion-Source

Ion-Source	• At the PSS Ion-source page: Ve zero reading, read and record	rify gas flow re	egulator function	ality by selecting H-, set value and read out is to match and zer	o setting is to provide		
	Gas handling						
	Checkpoint	Set value	Reading				
	H2 gas pressure (bar):	4.00	4.00	• Read the value on the last stage of the supply line			
• Switch on the H- gas and set to your normal value verify that the flip in probe is in and switch on the Ion-source, set to 50mA							
	 Start the IS conditioning procedure : turn ON Ion source and leave it at a current of 20 mA for 10 minutes NOTE! Probe reading of 200μA should be displayed prior to 600mA on the Ion-source 						
				probe is, switch on the Ion-source, set to 50mA, read and record e steps until 200 μ A on probe are displayed	d the Ion-source		
	H- burning properties						
	Gas 5,0ml/minut	DEE 1(kV)	DEE 2 (kV)	Magnet (A)			

48.00 1272.00 68.00 1233.00 98.00 1076.00 118.00 975.00 0.00 862.00 166.00 801.00 198.00 728.00	43.00 87.00 154.00 204.00 268.00 310.00 (2.2.00
98.00 1076.00 118.00 975.00 0.00 862.00 166.00 801.00 198.00 728.00	154.00 204.00 268.00 310.00
118.00 975.00 0.00 862.00 166.00 801.00 198.00 728.00	204.00 268.00 310.00
0.00 862.00 166.00 801.00 198.00 728.00	268.00 310.00
166.00 801.00 198.00 728.00	310.00
198.00 728.00	
	62.00
266.00	62.00
66.00 366.00	365.00
3.00 43.00	1287.00
266.00 458.00	0.00

Comments:	coment final
PHOTO:	